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Abstract

Visual Semantic Embedding (VSE) is a dominant ap-
proach for vision-language retrieval, which aims at learning
a deep embedding space such that visual data are embedded
close to their semantic text labels or descriptions. Recent
VSE models use complex methods to better contextualize and
aggregate multi-modal features into holistic embeddings.
However, we discover that surprisingly simple (but care-
fully selected) global pooling functions (e.g., max pooling)
outperform those complex models, across different feature
extractors. Despite its simplicity and effectiveness, seeking
the best pooling function for different data modality and
feature extractor is costly and tedious, especially when the
size of features varies (e.g., text, video). Therefore, we pro-
pose a Generalized Pooling Operator (GPO), which learns
to automatically adapt itself to the best pooling strategy for
different features, requiring no manual tuning while staying
effective and efficient. We extend the VSE model using this
proposed GPO and denote it as VSE∞.

Without bells and whistles, VSE∞ outperforms previous
VSE methods significantly on image-text retrieval bench-
marks across popular feature extractors. With a simple adap-
tation, variants of VSE∞ further demonstrate its strength by
achieving the new state of the art on two video-text retrieval
datasets. Comprehensive experiments and visualizations
confirm that GPO always discovers the best pooling strategy
and can be a plug-and-play feature aggregation module for
standard VSE models. Code and pre-trained models are
available at http://jcchen.me/vse_infty/

1. Introduction
Recognizing and describing the visual world with natural

language is an essential capability for artificial intelligence.
It motivates the research of image-text matching, which
challenges a learning agent to establish accurate and general-
izable alignment between visual and textual data, so that one
can identify images or videos by text queries or vice versa.

Visual semantic embedding (VSE) [9, 10, 22] tackles this
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challenge by learning a semantic embedding space, where
the distance between paired visual and textual instances in
the embedding space is optimized to be small. The core idea
of the VSE has three steps:
Step 1. Extract a set (or sequence) of features from data,
using feature extractors (e.g., ConvNets for visual data).
Step 2. Contextualize and aggregate the extracted features
to project them into the joint embedding space as holistic
vectors, using feature aggregators.
Step 3. Compute the matching score between embeddings
with a similarity metric (e.g., cosine distance).
With the feature extractor determined, one might expect that
a complex aggregator is required to achieve good results.
However, we show (in § 3) that a surprisingly simple and
efficient aggregator, a carefully selected pooling function
(e.g., max pooling), can surpass prior state-of-the-art VSE
methods with complex aggregators [17, 27, 43, 45, 46].

Such pooling functions are both simple and effective.
However, searching for the optimal pooling requires exten-
sive manual tuning and repetitive experiments (e.g., grid
search) for each data modality and features, which is tedious
and costly as it enumerates over a combinatorial number of
configurations. This search procedure could be even more
complicated when the sets of features have varying sizes.

Can we discover the best pooling strategy automatically?
In this paper, we propose a novel parameterized pooling op-
erator, Generalized Pooling Operator (GPO), to fully exploit
the strengths of pooling-based feature aggregation. GPO
generalizes over various pooling functions and learns to ad-
just itself to the best one for different data modalities and
feature extractors. Specifically, GPO learns a generator that
predicts the pooling coefficients to weight the elements of
sorted feature vectors, and use their weighted sum as the
pooling output. The coefficient generator is instantiated as a
tiny sequence model to handle variable-sized features. GPO
learns to adapt to the optimal pooling strategy, and improve
VSE models at a negligible extra computational cost.

With the proposed GPO, we build our multi-modal match-
ing system as VSE∞, which extends a standard VSE
framework[22] by using GPO as the feature aggregators for
both visual and text features. We train our system optimizing
a margin-based triplet ranking objective similar to [9], with
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Figure 1. Illustration of the standard Visual Semantic Embedding framework with the proposed pooling-based aggregator, i.e., Generalized
Pooling Operator (GPO). It is simple and effective, which automatically adapts to the appropriate pooling strategy given different data
modality and feature extractor, and improves VSE models at negligible extra computation cost.

the online hard-negative mining.

Without bells and whistles, VSE∞ surpasses all pre-
vious state-of-the-art VSE-based methods on the image-
text retrieval tasks, over COCO [21] and Flickr30K [49].
With a straightforward extension, variants of VSE∞ also
achieve the best video-text retrieval results on two bench-
mark datasets, i.e., MSR-VTT [48] and VaTeX [44]. In
additional experiments, we show that GPO consistently out-
performs other alternative learnable poolings from the litera-
ture. To better understanding GPO, we further visualize the
pooling strategy found by VSE∞, and compare it with the
one from a thorough grid search process.

Our contributions are summarized as the following:

• We empirically find that carefully selecting simple pooling
functions can outperform complex visual aggregators in
prior VSE methods for image-text matching.

• We propose a novel Generalized Pooling Operator (GPO)
that generalizes various pooling functions. It learns to
automatically discover the best pooling function for image,
text, and video data with various feature extractors.

• We build up VSE∞ with GPO, which achieves the new
state-of-the-art performances among VSE methods on
image-text and video-text retrieval.

• We visualize the pooling strategies learned by GPO, and
verify that GPO learns the best pooling strategies given
the data by comparing VSE∞ with a thorough grid search
over pooling functions of all modalities.

2. Visual Semantic Embedding for
Multi-modal Matching

We begin by revisiting the formal formulation of Visual
Semantic Embedding (VSE). A VSE model (illustrated in
Figure 1) leverages a visual embedding function Φ(x) such
as convolutional neural networks (e.g. CNNs [12, 47]), and
a text embedding function Ψ(t) such as sequence models
(e.g. LSTMs [14], Transformers [42]), to compute the set of

visual features and text features, respectively:

ConvNet(x) : x→ {φn}Nn=1,

SeqModel(t) : t→ {ψm}Mm=1

Here the set of visual features {φn}Nn=1 has N elements
of convolutional local representations with φn ∈ Rd1 . As
aforementioned, the concrete form of φn can be feature
vectors of spatial grids from the feature map, object propos-
als [1], or spatial-pyramids [13], depending on the feature ex-
tractor. Similarly, text features {ψt}Mm=1 denotes a sequence
of M contextualized word token features out of a sequence
model where M is the number of words and ψm ∈ Rd2 .
Here d1 and d2 are the feature dimensions.

The output visual features {φn}Nn=1 and textual features
{ψt}Mm=1 are then aggregated by visual and textual aggre-
gators fVISUAL(·) and fTEXT(·), to further encode the holistic
visual and text embedding v,u ∈ Rd3 as follows:

v = fVISUAL

(
{φn}Nn=1

)
, u = fTEXT

(
{ψm}Mm=1

)
.

The compatibility score is then defined as the cosine similar-
ity between v and u, formally as:

s(x,t) =
v>u

‖v‖ · ‖u‖
During the inference, the s(x,t) scores are used to rank a
query text against all candidate images, and the top candidate
are returned as the prediction. We note that the inference
procedure is efficient as the visual and text embedding v
and u can be pre-computed. The pair-wise scores are then
computed by matrix multiplication.
Learning Multi-modal Matching To learn a VSE model,
existing methods mostly optimize the hinge-based triplet
ranking loss with online hard negative mining proposed by
VSE++ [9]. The concrete matching objective is defined by:

`MATCH =
∑

(x,t)∼D

[α− s(x,t) + s(x,t̂)]
+

+ [α− s(x,t) + s(x̂,t)]+ (1)



Table 1. Image-text retrieval results in R@1 of VSE models
with different visual aggregator, evaluated with MS-COCO 1K.
See § 5.1 for details.

Region [1] Grid [18]

Aggregator #Param T → I I → T T → I I → T

AvgPool [9] 0 54.0 68.5 58.9 72.4
Seg2Seq [15] 6.3M 58.5 69.9 61.5 73.3
SelfAttn [43, 45] 3.2M 56.2 70.2 60.3 73.0
GCN+AvgPool [27] 4.2M 54.9 69.0 59.5 71.8
GCN+Seg2Seq [27] 23.1M 60.7 72.5 59.5 71.1

Best Pooling Function 0 60.7 74.5 61.6 76.3

where α is a hyper-parameter. (x, t) is a positive image-text
pair in the dataset D and [x]+ ≡ max(0, x). We represent
t̂ = argmaxt′ 6=ts(x,t′) and x̂ = argmaxx′ 6=xs(x′,t) as
the hardest negative text and image examples measured by
the learned VSE model within a mini-batch.

3. VSE∞ with Generalized Pooling Operator
In this section, we first present an empirical finding that

highlights the effectiveness of well-selected pooling function
in VSE model, which motivates our methodological pursuit
(§ 3.1). We then propose our method, Generalized Pooling
Operator (GPO), with a introduction of its formal definition
(§ 3.2), followed by the details of GPO’s concrete model
architecture (§ 3.3). Finally, we summarize our multi-modal
system (VSE∞) that leverages GPO (§ 3.4).

3.1. Simple Pooling Works the Best

As aforementioned in § 1, complex aggregators f have
been investigated in the VSE literature [17, 27, 43, 45, 46],
such as sequence-to-sequence encoder (Seq2Seq), graph con-
volution network (GCN), self-attention encoder (SelfAttn),
etc. However, we surprisingly find that these aggregation
models with millions of parameters underperform carefully
selected pooling functions.

Table 1 highlights a comparison between different aggre-
gators, across two widely used image feature extractors in
the literature [18] – Grid feature is the feature maps from
ConvNets and Region feature is the ROI features from object
detectors [1] (details in § 5). The results are reported in re-
call@1 for text-based image retrieval (T→I) and vice versa.
Given the candidates of Average Pooling (AvgPool), Max
Pooling (MaxPool) and K-Max Pooling (K-MaxPool [20],
details in § 3.2) with different K, it shows that the best among
them consistently outperform complex aggregators. Here,
the best results for Region and Grid feature are achieved by
MaxPool and K-MaxPool (K=20), respectively.
Analyses of the Empirical Findings. Most complex ag-
gregators are designed to contextualize the input features
spatially, leveraging the relationship between spatial grids
or regions. However, these aggregators introduce a large set

of parameters in addition to the vanilla VSE model, which
causes a higher risk of over-fitting comparing to simple pool-
ing functions. In this paper, instead of investigating why
complex aggregators are suboptimal, we focus on maximiz-
ing the advantages of pooling-based aggregation.

While the optimal pooling strategy enjoys simplicity
and effectiveness, searching it requires repetitive experi-
ments over numerous configurations (e.g., different K for
K-MaxPool), which is both tedious and costly. This process
can be more complicated when the feature extractor changes,
or when the features have variable lengths (e.g., text).

Motivated by these, we aim for a general and plug-and-
play pooling operator that generalizes over different pooling
patterns (e.g., Avg, Max and K-MaxPool with arbitrary K)
for variable-sized inputs, and learns to automatically adapt
itself to the best strategy according to the data (e.g., image,
text, video etc.) and feature extractors. We denote our pro-
posed module as the Generalized Pooling Operator (GPO).

3.2. Generalizing over Different Pooling Strategies

Suppose that we have a set of N feature vectors {φi
n}Nn=1

and our goal is to obtain a holistic vectorized embedding vi

out from the N elements, for each dimension i = 1, . . . , d1.
Here we use the superscript i to index the i-th dimension
of the feature vector. We further denote maxk(·) as the
operator that takes the k-th maximum value from an ordered
list. Then, we can formally define commonly used pooling
strategies as the following:
• AvgPool The average pooling computes the mean value

among the N elements, as vi = 1
N

∑N
n=1 φ

i
n,∀i.

• MaxPool The max pooling computes the maximum value
among the N elements, as vi = max1({φi

n}Nn=1),∀i.

• K-MaxPool The K-max pooling computes the mean value
of the top-K maximum values among the N elements, as
vi = 1

K

∑K
k=1 maxk({φi

n}Nn=1),∀i.
Main Idea As described above, GPO aims to generalize over
various pooling strategies, so that the pooling operator can
automatically find the most appropriate strategy for different
features. Therefore, GPO learns to generate the pooling
coefficients θ, and the pooling is defined as a weighted sum
over sorted features:

vi =

N∑
k=1

θk · maxk

(
{φi

n}Nn=1

)
,∀i, (2)

where
N∑

k=1

θk = 1.

Here, the coefficients θ are of the size N, with a scalar weight
θk for the k-th maximum value among the N elements. The
constraint

∑N
k=1 θk = 1 is enforced via Softmax. The

parameterized pooling operator can approximate AvgPool,



Figure 2. Detailed illustration of the GPO architecture.

MaxPool, K-MaxPool with arbitrary K, and more complex
pooling functions. For instance, the learned pooling strat-
egy could weight the top-K elements unevenly, or only set
non-zero values for θ1 and θN . We visualize some learned
pooling coefficients in § 5.3.

Learning to Generate the Pooling Coefficients The most
straightforward way to parameterize θ is to define it as a
trainable vector, but this can only deal with the scenario
where N is a constant integer. When the features are of
variable sizes, which is common in video and text sequences,
learning a fixed set of coefficients θ is no longer feasible.
To address this issue, we propose to learn a parameterized
function g(·, ·) as the coefficient generator:

θk = g(k,N),where k = 1, . . . ,N. (3)

As a consequence, for each position k, the coefficient gener-
ator g(·, ·) outputs a coefficient θk to aggregate {φi

n}Nn=1.

3.3. Implementing Generalized Pooling Operator

Now we discuss the concrete implementation of the GPO
function g(·, ·). Figure 2 provides an illustration of the archi-
tecture. There are two major components in the GPO design:
(1) A positional encoding function based on trigonometric
function; (2) A sequence model that takes the positional
encoding sequence to generate pooling coefficients, based
on bidirectional Gated Recurrent Unit (BiGRU).

Encoding Position Every position index k is uniquely repre-
sented by a dense vector, such that the vector can be further
transformed to θk by parameterized functions. A common
approach here is to learn an embedding matrix in which row
k is the embedding for k. However, this presumes the input
positions {1, . . . , k, . . . ,N} orthogonal to each other. To
make more efficient use of the prior information between
position indices, we adopt the positional encoding strategy

used in Transformers [42] to vectorize positional indices:

pik =

{
sin(wj , k), when i = 2j

cos(wj , k), when i = 2j + 1
,∀i. (4)

where wj =
1

100002j/d3
and d3 is the number of dimensions

for the positional encoding.
Generating Pooling Coefficients with a Sequence Model
Using the positional encoding above, we transform every
position index k into a dense vector pk ∈ Rd3 . Next, we
learn a sequence model to produce the pooling coefficients.
Since the size of feature set N varies, it is necessary for the
coefficient generator to be aware of the size of feature set.
Therefore, we make use of a sequence-to-sequence decoder
function, which takes the sequence of positional encodings
p = {pk}Nk=1 as input and outputs the sequence of pooling
coefficients θ = {θk}Nk=1. The decoder function consists of
a small BiGRU and a multi-layer perceptron (MLP):

{hk}Nk=1 = BiGRU({pk}Nk=1), θk = MLP(hk) (5)

Here hk is the output of the BiGRU at the position k.
Learning Generator with Diverse Set Sizes To make
GPO’s coefficient generator g(·, ·) better approximate differ-
ent pooling patterns for variable-sized inputs, we perform
a data augmentation strategy to allow it observing a larger
variety of feature set sizes. During the training, we randomly
drop 20% inputs vectors to perturb the size of the input fea-
ture set, which we call Size Augmentation. We show in
Appendix that applying this strategy to both image and text
effectively improve the performance of VSE models.

3.4. Building up VSE∞ using GPO

We build up our multi-modal matching model (dubbed
VSE∞) by pluging GPO into the standard VSE framework
(§ 2). Specifically, we replace the visual and text aggregators
in the standard VSE framework (i.e., AvgPool) with two
GPOs. The two GPOs project the image feature vectors
and text feature vectors independently into two holistic em-
beddings, to further compute the matching score. VSE∞
is closely related to previous VSE models. We adopt the
learning framework of VSE++ [9] (Eq. 1), which improves
early VSE models [10, 22] with an additional online hard
negative mining procedure. We refer to § 5 for more details.

4. Related Works
Existing image-text matching methods can be categorized

differently based on how the cross-modal interaction is im-
plemented. As aforementioned, Visual Semantic Embedding
(VSE) [9, 10, 22, 27, 46] learns a joint embedding space,
such that the compatibility score can be computed as a inner-
product between the two holistic image and text vectors.



Table 2. Image-Text Retrieval Results of VSE-based methods on COCO and Flickr30K datasets, using different visual and textual backbones
(denoted by bold section title). ?: Ensemble results of two models; on IN/IN+VG/IG: Models pre-trained on ImageNet [38], ImageNet and
VisualGenome [23], or Instagram [32], respectively. The best and second best results (in RSUM) are marked bold in red and black. We refer
to the Appendix for extensions of this table with more baselines and COCO 5K results.

Data Split COCO 5-fold 1K Test [5] Flickr30K 1K Test [49]

Eval Task IMG → TEXT TEXT → IMG IMG → TEXT TEXT → IMG

Method Feature Type R@1 R@5 R@10 R@1 R@5 R@10 RSUM R@1 R@5 R@10 R@1 R@5 R@10 RSUM

ResNet-101 Faster-RCNN on IN+VG (BUTD) [1] + BiGRU
LIWE [45]2019 Region 73.2 95.5 98.2 57.9 88.3 94.5 507.6 69.6 90.3 95.6 51.2 80.4 87.2 474.3
VSRN?[27]2019 Region 76.2 94.8 98.2 62.8 89.7 95.1 516.8 71.3 90.6 96.0 54.7 81.8 88.2 482.6
CVSE [43]2020 Region 69.2 93.3 97.5 55.7 86.9 93.8 496.4 70.5 88.0 92.7 54.7 82.2 88.6 476.7
Our: VSE++ Region 68.5 92.6 97.1 54.0 85.6 92.7 490.5 62.2 86.6 92.3 45.7 73.6 81.9 442.3
Our: VSE∞ Region 78.5 96.0 98.7 61.7 90.3 95.6 520.8 76.5 94.2 97.7 56.4 83.4 89.9 498.1
Our: VSE∞ Region+Grid 80.0 97.0 99.0 64.8 91.6 96.5 528.8 80.7 96.4 98.3 60.8 86.3 92.3 514.8

ResNet-101 Faster-RCNN on IN+VG (BUTD) [1] + BERT [7]
Our: VSE++ Region 67.9 91.9 97.0 54.0 85.6 92.5 488.9 63.4 87.2 92.7 45.6 76.4 84.4 449.7
Our: VSE∞ Region 79.7 96.4 98.9 64.8 91.4 96.3 527.5 81.7 95.4 97.6 61.4 85.9 91.5 513.5
Our: VSE∞ Region+Grid 82.2 97.5 99.5 68.1 92.9 97.2 537.4 85.3 97.2 98.9 66.7 89.9 94.0 532.0

ResNeXT-101 on IG (WSL) [32] + BERT [7]
Our: VSE++ Grid 79.6 97.1 99.0 66.4 91.1 95.5 528.7 80.9 96.6 98.9 65.2 89.5 93.7 524.8
Our: VSE∞ Grid 84.5 98.1 99.4 72.0 93.9 97.5 545.4 88.4 98.3 99.5 74.2 93.7 96.8 550.9
Our: VSE∞ ? Grid 85.6 98.0 99.4 73.1 94.3 97.7 548.1 88.7 98.9 99.8 76.1 94.5 97.1 555.1

Therefore, VSE relies on learning strong image and text
embedding functions to obtain high-quality joint embedding
space. Frome et al. [10] used this approach for zero-shot im-
age recognition [2, 24, 34], via matching visual embeddings
with semantic word embeddings. Kiros et al. [22] extends
the idea by using bi-directional LSTMs to encode sentence
as the semantic embedding. Faghri et al. proposes VSE++,
which learns with online hard-negative mining and further
improves the quality of VSE models [9]. VSE++ is one of
the most fundamental VSE methods that use AvgPool as the
feature aggregator. Beyond the above, more research along
this line focused on improving the visual or text embedding
function (especially the aggregator), or designing auxiliary
training objectives [8, 11, 17, 27, 33, 40, 41, 46].

Recently, methods using BERT models for vision-
language data (V+L BERTs) [6, 16, 26, 28, 29, 31] learns
to perform rich cross-modal interaction, via tailored mecha-
nisms such as (single/multi-headed) cross-attention [25, 42].
These methods typically use a BERT [7] as the text feature
extractor and learn additional cross-modal Transformers for
rich cross-modal interactions. At the same time, these meth-
ods perform large-scale visual-linguistic pre-training with
a collection of datasets with paired images and text (e.g.,
the Conceptual Caption dataset [39]). Comparing to this
family of methods, VSE models are inferior in empirical
performances as its lack of strong cross-modal interaction.
However, VSE models are orders of magnitude more effi-
cient than V+L BERTs in terms of cross-modal retrieval as

the latter requires the huge BERT model to forward over all
pairs of images and texts. In § 5.1.1, we show that the best
VSE∞ can attain a close image-text matching performance
to the best V+L BERT method while being much faster in
large-scale multi-modal retrieval.

5. Experiments
We conduct experiments to validate VSE∞ on image-text

(§ 5.1.1) and video-text matching (§ 5.1.2). We compare
GPO with alternative poolings in § 5.2, and analyze the
learned GPO in § 5.3. We refer to the Appendix for complete
experimental details and more ablation studies.

5.1. Multi-modal Retrieval Experiments

Multi-modal retrieval is typically evaluated using the met-
ric of recall at K (R@K), with K = {1, 5, 10}. We fol-
low [3, 46] to use RSUM, which is defined as the sum of
recall metrics at K = {1, 5, 10} of both I→T (I2T) and
T→I (T2I) retrievals, as a summarizing metric to gauge re-
trieval model’s overall performances. In all experiments, we
set the dimensions of the positional encoding and BiGRU to
be 32. Therefore, GPO has 0.1M parameter in total, which
is less than 1% of the entire model.

5.1.1 Image-text Retrieval

Setup For image-text retrieval, we perform experiments on
MS-COCO [5, 30] and Flickr30K [49] over various feature



Table 3. Comparison between variants of VSE∞ and V+L BERTs.
All methods uses BERT-base. ?: ensemble results of two models.
R/G in parenthesis represents Region/Grid features.

Data Split COCO 5K Test [5]
Eval Task IMG → TEXT TEXT → IMG

Method Pretrain CNN R@1 R@5 R@1 R@5

ViLBERT[50] 3 BUTD 53.5 79.7 38.6 68.2
ViLBERT DG[50] 3 BUTD 57.5 84.0 41.8 71.5
UNICODER VL[26] 3 BUTD 62.3 87.1 46.7 76.0
UNITER[6] 3 BUTD 64.4 87.4 50.3 78.5
OSCAR[29] 3 BUTD 70.0 91.1 54.0 80.8

Our Methods
VSE∞ (R) 7 BUTD 58.3 85.3 42.4 72.7
VSE∞ (R+G) 7 BUTD 62.5 87.8 46.0 75.8
VSE∞ (G) 7 WSL 66.4 89.3 51.6 79.3
VSE∞ (G) ? 7 WSL 68.1 90.2 52.7 80.2

extractors. Each image of these two datasets is associated
with five text descriptions. COCO contains 123,287 images,
we use the data split of [9, 21, 25] where there are 113,287
training images, 5000 test images, and 5000 validation im-
ages. Flickr30K contains 31,000 images, we also use the
same data split as [9], where there are 29,000 training im-
ages, 1000 test images, and 1000 validation images. COCO
results are reported in 5K and 1K, where the 1K results are
averaged over the five 1K data folds. The image feature ex-
tractors are categorized into Region feature and Grid feature
following the naming convention in [18], where grid feature
represents the feature maps from a CNN, and region feature
represents object-level features from a detector.

Implementation Details The dimension of the joint embed-
ding space is 1024. We use pre-extracted object features [1]
as the region feature (BUTD feature). For grid feature, the
CNN backbone is fine-tuned, and we increase the resolution
of input images to 512×512 as suggested by [18]. We exper-
iment with two different CNNs: (1) ResNet-101 of Faster-
RCNN [37] pre-trained on ImageNet and Visual Genome
(BUTD) [1] and (2) ResNeXT-101(32×8d) [47] pre-trained
on Instagram (WSL) [32]. Meanwhile, we use either BiGRU
or BERT-base as the text feature extractor. We refer to the
Appendix for full training details and more results.

Main Results Table 2 compares VSE∞ with VSE baselines
over different feature extractors. VSE++ is the fundamen-
tal VSE method as described in § 4, we re-implement it
(denoted as Our: VSE++) and apply it on latest feature
extractors (e.g., BUTD image features, BERT, etc.). The
major difference to its original implementation is the input
image size for grid feature. LIWE [45], VSRN [27], and
CVSE [43] are state-of-the-art VSE methods proposed in
recent two years (we compare with more baselines in the
Appendix). We use numbers directly from original papers
except for CVSE, for which we re-run the official code af-
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Figure 3. We compare single GPU inference time for text-based
image retrieval (lower the better). VSE methods are much faster
than V+L BERTs, especially when number of images grows large.

ter removing unfair additional label inputs and fixing its
1K evaluation setting (details in Appendix). Region+Grid
means training two separate models with region and grid
feature and averaging their similarity outputs. Over all three
combinations of feature extractors, VSE∞ outperforms the
baselines without using complicated aggregator. Besides,
VSE∞ with WSL+BERT as feature extractors achieves the
best empirical results, improving over the second best fea-
ture extractors by a large margin. VSE∞ is better than the
baselines in both performance and simplicity. We present the
COCO 5K Test results, and results with additional feature
extractors in the Appendix.

Comparing VSE∞with V+L BERTs We further compare
VSE∞ with state-of-the-art V+L BERTs in Table 3. We
report results on COCO 5K as the 1K results reported by
V+L BERTs is computed on the first 1K fold, instead of the
average result over the five 1K folds. Without large-scale
V+L pre-training, our VSE∞ (R+G) is no worse than three
out of five V+L BERTs using the same feature extractors.
By using the WSL CNN to compensate for the lack of pre-
training, VSE∞ further outperforms UNITER and gets very
close to OSCAR [29], which is the current best V+L BERT.
This is a promising result since VSE models by design do
not have any fine-grained cross-modal interaction as V+L
BERTs (see § 4). Meanwhile, VSE methods are orders of
magnitude faster for large-scale multi-modal retrieval as the
holistic embeddings can be pre-computed or indexed [19],
and matrix multiplication is all we need to compute the
compatibility score. To demonstrate this, we perform an
additional text-to-image retrieval experiment with increasing
size of image candidates, and visualize the model’s inference
time in Figure 3. When the number of image candidates is
small, we observe that VSE is a hundred time faster than
V+L BERT. As the number of image candidates grows, the
gap of time cost increases almost quadratically. VSE∞ fully
exploits existing feature extractors and pushes the perfor-
mance of VSE-based methods to a new height, which have
significant impact in real-world problems such as image
search with text query.

Evaluating VSE∞ with Crisscrossed Captions We eval-



Table 4. Results on video-text retrieval benchmarks. ∞: Methods modified to using the GPO to aggregate frame and word features.

Method
VIDEO → TEXT TEXT → VIDEO

R@1 R@5 R@10 R@1 R@5 R@10 RSUM

VSE++[9] 14.4 34.1 45.6 8.3 24.0 34.1 160.5
VSE∞ 16.0 38.6 50.2 8.7 25.3 35.9 174.7

HGR [4] 15.0 36.7 48.8 9.2 26.2 36.5 172.4
HGR∞ 15.0 39.0 51.7 9.1 25.9 36.3 177.0

(a) MSR-VTT Video-Text Retrieval [48]

VIDEO → TEXT TEXT → VIDEO

R@1 R@5 R@10 R@1 R@5 R@10 RSUM

47.8 78.6 86.2 34.7 71.3 81.7 400.3
51.2 78.7 86.3 34.2 71.6 81.9 403.9

48.9 79.1 87.9 35.6 73.5 83.4 408.4
51.0 78.8 87.7 37.3 73.4 82.4 410.6

(b) VATEX Video-Text Retrieval [44]

Table 5. Evaluations on COCO 5K test set with Crisscrossed
Caption (CxC). All models are trained on the COCO dataset.

Method
I → T T → I T → T I → I

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

VSRN [27] 52.4 81.9 40.1 71.1 41.0 64.8 44.2 76.7
DE [35] 55.9 84.2 41.7 72.3 42.6 64.9 38.5 73.6
VSE∞ (BUTD) 60.6 87.4 46.2 76.3 45.9 68.7 44.4 78.3
VSE∞ (WSL) 67.9 90.6 53.6 81.1 46.7 69.2 51.3 83.2

uate our best models (with BERT and Grid features on ei-
ther BUTD or WSL backbones) on the Crisscrossed Cap-
tions(CxC) [35] extension of COCO, which evaluates image-
text matching systems more holistically with additional intra-
modal and inter-modal semantic similarity annotations. Ta-
ble 5 shows that our model can significantly outperform
the baseline for both inter-modality and intra-modality (on
BUTD features). Moreover, VSE∞ with WSL feature can
further boost the performances.

5.1.2 Video-text Retrieval

Setup We evaluate our method on two video datasets: MSR-
VTT [48] and VATEX [44]. MSR-VTT contains 10,000
videos while each video has 20 text descriptions, and we
use the standard split with 6573 videos for training, 2990
for testing and 497 for validation. VATEX contains 25,991
videos for training, 6000 for testing and 3000 for validation,
and the 10 English descriptions for each video are used in
the experiments. We splits the original validation set into
new validation and testing set, each with 1500 videos, as [4].

Implementation Details We use ResNet-152 pre-trained on
ImageNet to extract frame features for MSR-VTT and use
the official I3D feature for VATEX. All implementations
are based on the official code of the video-text matching
method HGR [4], and we re-train all models. BiGRU is the
text backbone for all experiments and the VSE setting is
similar to 5.1.1 except that visual features are frame-level
video features. Complete details are in the Appendix.

Main Results Table 4 presents the effectiveness of VSE∞
on video-text matching. VSE++ for video-text matching

is an extension of the image-text version. HGR [4] is the
current state-of-the-art method, which employs hierarchical
matching strategies. By replacing the AvgPool on frames and
text with GPO, VSE∞ clearly outperforms VSE++ in terms
of RSUM. Additionally, we change the pooling function in
the global-matching branch of HGR [4] with GPO (denoted
as HGR∞), and get consistent improvements.
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Figure 4. Left figure studies different aggregators on two visual
features, with AvgPool as the text aggregator for BiGRU. Right
figure studies different aggregators on two textual features, while
using GPO as the visual aggregator for the region features.

5.2. Comparing GPO to Alternative Poolings

We compare GPO with several representative learnable
pooling methods across four combos of visual and text fea-
ture extractors. GPO’s Size Augmentation is used in all
cases for fair comparison. The baselines include:
• Generalized Mean Pooling (GeM) [36], an adaptive

pooling function with a single trainable parameter, and is
popular in image search literature;

• Feature-sorting Pooling (FSPool) [51], a learnable pool-
ing that handles variable-sized inputs by interpolating a
fixed-size learnable vector, which was proposed to encode
sets in permutation-invariant manner. FSPool generates
different pooling coefficients for each feature dimension.

• CLS token based aggregation, which is widely used for
aggregating text features in the BERT models [7]. For
BiGRU, we simply take the feature of the first token for
the CLS aggregation.

Figure 4 presents the comparison in R@1 of COCO I2T,
we skip T2I results since the conclusions are the same. In
the left part of visual pooling, FSPool is close to GPO on
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Figure 5. Visualization of pooling coefficients learned by GPO. The left and right figures are the VSE models on “BUTD Region+BiGRU”
and “WSL Grid+BERT” features, respectively.
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Figure 6. Illustrating the grid search process using K-MaxPool with
various K, on BUTD region and BiGRU features. The results are
the RSUM values of COCO 5-fold 1K evaluation.

grid feature, but much worse on region feature. We note
that the official GeM implementation is not numerical stable
and it causes gradient explosion when training with region
feature and BiGRU. In the right of Figure 4, we vary over
different textual pooling strategies, with BiGRU or BERT
being the text feature extractor. Again, GPO outperforms all
alternative pooling methods. It is worth noting that BERT’s
default CLS aggregator is far from being optimal in the
context of multi-modal matching. Above all, GPO is the best
pooling strategy on various combinations of features, and
can serve as a plug-and-play per-modality feature aggregator.

5.3. Visualizing and Understanding GPO

To better understand the pooling patterns learned by GPO,
we visualize the learned pooling coefficients of GPO in Fig-
ure 5. On BUTD region feature, GPO approximates MaxPool,
which is consistent with the observation in § 3. On grid
feature, the coefficients are less regular, but large position
indices take up most large values. We additionally observe
that GPO generates non-zero coefficients for the maximum
and minimum values of BiGRU features, which goes beyond
the pattern of K-MaxPool. The learned pooling strategy for
BERT is close to MaxPool.
Comparing GPO against Grid Search. We recall that the
main motivation of GPO is to fully exploit the advantages of
simple pooling functions but eliminate the repetitive manual

experiments for seeking the best pooling hyperparameter.
To verify how GPO address this challenge, we conduct a
manual grid search over K-MaxPool with different K val-
ues for image-text matching with BUTD region and BiGRU
features. GPO’s Size Augmentation is used here for fair
comparison as it improves performance (see Appendix for
details). As shown by Figure 6, the best RSUM given by the
grid search is 520.4, which is slightly worse than the 520.8
of the corresponding GPO entry in Table 2, which means
that GPO successfully refrains us from the costly repetitive
search. Note that GPO generates a pooling strategy beyond
K-MaxPool for BiGRU (Figure 5), although it does not make
it significantly better than the best-selected K-MaxPool.

Figure 6 shows that the best combination of pooling func-
tions for visual and text modalities are entangled with each
other. For instance, the best textual pooling function varies
when the visual pooling function is changed. Therefore, a
n× n search is necessary to find the optimal combinations
of K, where n is the number of grids for each modality.
This could become worse when the visual feature includes
multiple feature extractors (e.g., region+grid), as the search
complexity can further become O(n3).

In summary, GPO keeps the effectiveness and efficiency
of best-selected pooling functions, and avoids the annoy-
ing grid search process. GPO can serve as a plug-and-play
aggregation module to improve VSE models.

6. Conclusion
In this paper, we propose the Generalized Pooling Opera-

tor (GPO), which learns to automatically adapt itself to the
best pooling strategy for different data and feature backbone.
As a result, we build up our VSE∞ by extending the standard
VSE model with GPO as the feature aggregators. VSE∞
outperforms previous VSE methods significantly on image-
text retrieval benchmarks across popular feature extractors.
We further demonstrate that our VSE model achieves compa-
rable image-text matching performances to vision+language
BERT models, without visual-linguistic pre-training. Com-
prehensive ablation experiments confirm that GPO discovers
proper pooling strategies. With simple adaptations, variants
of VSE∞ further demonstrate effectiveness by achieving the
new state of the art on two video-text retrieval datasets.



References
[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney,

Mark Johnson, Stephen Gould, and Lei Zhang. Bottom-
up and top-down attention for image captioning and visual
question answering. In IEEE Conf. Comput. Vis. Pattern
Recog., 2018. 2, 3, 5, 6

[2] Soravit Changpinyo, Wei-Lun Chao, Boqing Gong, and Fei
Sha. Synthesized classifiers for zero-shot learning. In IEEE
Conf. Comput. Vis. Pattern Recog., 2016. 5

[3] H. Chen, G. Ding, Xudong Liu, Zijia Lin, J. Liu, and J. Han.
Imram: Iterative matching with recurrent attention memory
for cross-modal image-text retrieval. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 12652–12660, 2020. 5

[4] Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. Fine-grained
video-text retrieval with hierarchical graph reasoning. In
IEEE Conf. Comput. Vis. Pattern Recog., 2020. 7

[5] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-
tam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick.
Microsoft coco captions: Data collection and evaluation
server. arXiv preprint arXiv:1504.00325, 2015. 5, 6

[6] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:
Learning universal image-text representations. Eur. Conf.
Comput. Vis., 2020. 5, 6

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. In NAACL-HLT, 2019. 5,
7

[8] Aviv Eisenschtat and Lior Wolf. Linking image and text with
2-way nets. In IEEE Conf. Comput. Vis. Pattern Recog., 2017.
5

[9] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja
Fidler. Vse++: Improved visual-semantic embeddings. In
BMVC, 2017. 1, 2, 3, 4, 5, 6, 7

[10] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio,
Jeff Dean, Marc’Aurelio Ranzato, and Tomas Mikolov. De-
vise: A deep visual-semantic embedding model. In Adv.
Neural Inform. Process. Syst., 2013. 1, 4, 5

[11] Jiuxiang Gu, Jianfei Cai, Shafiq R Joty, Li Niu, and Gang
Wang. Look, imagine and match: Improving textual-visual
cross-modal retrieval with generative models. In IEEE Conf.
Comput. Vis. Pattern Recog., 2018. 5

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., 2015. 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Spatial pyramid pooling in deep convolutional networks for
visual recognition. TPAMI, 37(9):1904–1916, 2015. 2

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computation, 9:1735–1780, 1997. 2

[15] Hexiang Hu, Ishan Misra, and Laurens van der Maaten. Bi-
nary image selection (bison): Interpretable evaluation of vi-
sual grounding. arXiv preprint arXiv:1901.06595, 2019. 3

[16] Yan Huang and Liang Wang. Acmm: Aligned cross-modal
memory for few-shot image and sentence matching. In Int.
Conf. Comput. Vis., 2019. 5

[17] Yan Huang, Qi Wu, Chunfeng Song, and Liang Wang. Learn-
ing semantic concepts and order for image and sentence
matching. In IEEE Conf. Comput. Vis. Pattern Recog., 2018.

1, 3, 5
[18] Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik G.

Learned-Miller, and Xinlei Chen. In defense of grid fea-
tures for visual question answering. IEEE Conf. Comput. Vis.
Pattern Recog., 2020. 3, 6

[19] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale
similarity search with gpus. IEEE Transactions on Big Data,
2019. 6

[20] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom.
A convolutional neural network for modelling sentences. In
ACL, 2014. 3

[21] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In IEEE Conf. Com-
put. Vis. Pattern Recog., 2015. 2, 6

[22] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel.
Unifying visual-semantic embeddings with multimodal neural
language models. NeurIPS Workshop Deep Learning, 2014.
1, 4, 5

[23] Ranjay Krishna, Yuke Zhu, Oliver Groth, J. M. Johnson, Kenji
Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-
Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-
Fei. Visual genome: Connecting language and vision using
crowdsourced dense image annotations. IJCV, 123:32–73,
2016. 5

[24] Christoph H Lampert, Hannes Nickisch, and Stefan Harmel-
ing. Attribute-based classification for zero-shot visual object
categorization. TPAMI, 36(3):453–465, 2013. 5

[25] Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xi-
aodong He. Stacked cross attention for image-text matching.
In Eur. Conf. Comput. Vis., 2018. 5, 6

[26] Gen Li, Nan Duan, Yuejian Fang, Daxin Jiang, and Ming
Zhou. Unicoder-vl: A universal encoder for vision and lan-
guage by cross-modal pre-training. AAAI, 2019. 5, 6

[27] Kunpeng Li, Yulun Zhang, Kai Li, Yuanyuan Li, and Yun Fu.
Visual semantic reasoning for image-text matching. In Int.
Conf. Comput. Vis., 2019. 1, 3, 4, 5, 6, 7

[28] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,
and Kai-Wei Chang. Visualbert: A simple and perfor-
mant baseline for vision and language. arXiv preprint
arXiv:1908.03557, 2019. 5

[29] Xiujun Li, Xi Yin, C. Li, X. Hu, Pengchuan Zhang, Lei Zhang,
Longguang Wang, H. Hu, Li Dong, Furu Wei, Yejin Choi, and
Jianfeng Gao. Oscar: Object-semantics aligned pre-training
for vision-language tasks. Eur. Conf. Comput. Vis., 2020. 5, 6

[30] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In Eur.
Conf. Comput. Vis., 2014. 5

[31] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert:
Pretraining task-agnostic visiolinguistic representations for
vision-and-language tasks. In Int. Conf. Comput. Vis., 2019.
5

[32] Dhruv Kumar Mahajan, Ross B. Girshick, Vignesh Ra-
manathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin
Bharambe, and Laurens van der Maaten. Exploring the limits
of weakly supervised pretraining. In Eur. Conf. Comput. Vis.,
2018. 5, 6

[33] Hyeonseob Nam, Jung-Woo Ha, and Jeonghee Kim. Dual
attention networks for multimodal reasoning and matching.



In IEEE Conf. Comput. Vis. Pattern Recog., 2017. 5
[34] Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram

Singer, Jonathon Shlens, Andrea Frome, Greg S Corrado, and
Jeffrey Dean. Zero-shot learning by convex combination of
semantic embeddings. Adv. Neural Inform. Process. Syst.,
2014. 5

[35] Zarana Parekh, Jason Baldridge, Daniel Cer, Austin Waters,
and Yinfei Yang. Crisscrossed captions: Extended intramodal
and intermodal semantic similarity judgments for ms-coco.
arXiv preprint arXiv:2004.15020, 2020. 7
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